FAA Clarifies Interpretation of ACS material to allow use of non-installed equipment for navigation demonstrations on private pilot practical test

Designated Pilot Examiners have experienced discussion debating what was intended in the private pilot airman certification standards (ACS) for use when demonstrating use of an installed electronic navigation system and demonstrating use of installed navigation equipment function and displays under the task of radio communications, navigation systems/facilities, and radar services. The questions related to if an applicant was required to provide an aircraft with an installed navigation system such as a GPS or VOR system or if a non-installed, but available system such as a portable GPS, a handheld VOR receiver, or an EFB device that was capable of being used for navigation would be allowed.

In a recent communication to FAA Designated Pilot Examiners, but that also has direct relevance to those providing the training for candidates for private pilot practical tests, the FAA clarified the current policy interpretation of the ACS document.

They noted as follows:

“… that the ACS navigation tasks in question can be demonstrated thoroughly either by using an Electronic Flight Bag (EFB), a hand held nav-com transceiver, installed equipment or any combination of these items. It appears that there was a change from “airborne navigation system” in the PTS to “installed navigation system” in the ACS that may have been unintended. In the June 2017 revision to the Private Pilot ACS, we will change the language in PA.VI.B.S1 from “installed” to “airborne.” We will also amend the language in PA.VIII.F.K7 to change “installed” to “available.”

Since the current phrasing was not intended, DPEs should act in accordance with the revised language as stated above for Tasks PA.VI.B.S1 and PA.VIII.F.K7.”

The implication of this for training and testing appears to allow an applicant to demonstrate these tasks in an aircraft with a non-installed, but “available” device that could satisfy the tasks. This is an important clarification for students, instructors, and examiners to make not of in that it will allow testing to be completed in aircraft that may not have a permanently installed navigation system.

A ceiling is not a ceiling is not a ceiling.

For those of us who have flown IFR actively, we know that sometimes a 500′ overcast ceiling will allow us to easily get down an ILS approach to our destination airport when sometimes the same reported 500′ ceiling on an ATIS will leave us going missed because we didn’t have the visibility to actually find the airport at the bottom of the approach.

In August this year, the FAA released an updated version of the Aviation Weather Advisory Circular AC 00-6B (click here to get a copy ). In taking a little time to review it the other day, I ran across a graphic that highlighted a key point pilots can make note of when listening to weather information before flying an approach. While many of us kind of know the basic considerations of this instinctively, a little review never hurt anyone.

In the AC, the FAA notes, “Not all ceilings are equally hazardous to a pilot. An indefinite ceiling is more hazardous than an equal ceiling caused by a layer aloft. Once a pilot descends below a ceiling caused by a layer aloft, the pilot can see both the ground below and the runway ahead. However, an indefinite ceiling restricts the pilot’s slant range (air-to-ground) visibility. Thus, the pilot may not see the runway ahead after he descends below the indefinite ceiling (see Figure 16-6).”

When we are thinking about flying in IFR weather with low ceilings, there is much to consider.

The FAA goes on to talk more about a low ceiling. “Stratus is the most frequent cloud associated with low ceilings. Stratus clouds, like fog, are composed of extremely small water droplets or ice crystals suspended in air. An observer on a mountain in a stratus layer would call it fog. Stratus and fog frequently exist together. In many cases, there is no real line of distinction between the fog and stratus; rather, one gradually merges into the other. Flight visibility may approach zero in stratus clouds. Stratus over land tends to be lowest during night and early morning, lifting or dissipating due to solar heating by late morning or early afternoon. Low stratus clouds often occur when moist air mixes with a colder air mass, or in any situation where temperature-dewpoint spread is small.”

So next time you are considering flying into low ceilings, think a little more deeply about what the METAR is reporting. Is it a solid overcast? Or should you expect that even when you descend below a layer that you will have difficulty with forward or slant range visibility also that could hinder your ability to complete an approach to a desired destination.


DME Arcs, The Case Against Them (at least for Practical Testing requirements)

It is time to take the mandatory requirement to test DME arc skills out of instrument pilot practical tests.

Before you think I am crazy, I don’t mean they “can’t” be part of the test, just that they don’t need to be mandatory.

This June, we instituted the new Instrument Pilot Airman Certification Standards, the document that guides examiners on what must be tested for airman seeking an instrument pilot practical test.

Task V, Navigation Systems, includes Task A. Intercepting and Tracking Navigational Systems and DME Arcs. Skill 7 requires that an applicant “Intercept an arc and maintain that arc within ±1 nautical mile” with a note in the section that “The evaluator may disregard reference to specific navigational equipment if the aircraft is not equipped with those systems.” The implication of this task is that if the aircraft is equipped with DME or (and this is potentially debatable) a GPS system capable of being substituted for DME.

The problem with this requirement is that in many locations, DME arc procedures are scarce, at a significant distance, or non-existent. The burden this places on the examiner and the applicant is starting to require that practical tests travel greater distances to accomplish the requirement of the ACS for the practical test.

If we consider current FAA policy, VOR facilities are going to become even more scarce in the near future. The following is illustrative of this point, “…308 VORs to be decommissioned as the agency moves to a satellite-based navigational system” according to a recent Aviation International News Article (http://www.ainonline.com/aviation-news/business-aviation/2016-07-26/faa-releases-vor-decommissioning-policy?eid=346248619&bid=1479201).

Many aircraft are still have DME equipment, yet testing is taking place in locations where no published DME arc procedures are present. This is resulting in examiners “making up” DME arcs just to test an applicant on the procedure using whatever nearby VOR is present even when no published procedure is in existence. This puts the applicant in the position to be asked by an examiner to conduct a procedure that is made up and that the examiner is attempting to convey. If done incorrectly, and if the examiner issues a disapproval as a result, it drives a debate on whether the examiner has asked the applicant to do something that is fairly within the scope of the ACS standards.

If we look forward and consider the reduction of VOR systems that will be present in the upcoming years, even to do a “made up” VOR arc may require an applicant to fly 100 miles or more accomplish this task on an practical test when the procedures themselves will be about as common as ADF approaches in the near future.

This by no means should be considered an indication that they would not be allowed to be tested, just that they would not be required. In the situation where an examiner is conducting a practical test and a nearby airport has a VOR with an established DME arc as a part of an instrument approach procedure, it should definitely be considered fairly within the scope of the non-precision approach (or if it leads to a precision approach such as an ILS) to test the applicant in the course of the practical test.

As our approach systems and procedures change, so must our training and testing procedures. The practicality of efficiently testing DME arcs is becoming unrealistic. It is time for our testing procedures to consider removal of the DME arc as a mandatory part of the Instrument Pilot ACS.

Anyone else have thoughts on this change suggestion?

Rebuild, Refurb, and Overhaul – Not the Answer to Our Future GA Aircraft Needs?

We have a major problem brewing in the GA aviation sector:  we are going to run out of planes.

Through the 1950’s, ‘60’s, and ‘70’s, aircraft manufacturers pumped out thousands of aircraft that the general aviation flying public bought and flew for personal and business activities. These weren’t big jet aircraft that corporations used as time machines to do more business, they were two to six seat planes the average pilot with a private pilot certificate or even the added instrument rating could fly with family, friends, and business partners to the thousands of airports around the country. These airports haven’t gone away, but the planes are going away.

Each year these aircraft get older and more of them get scrapped for any number of reasons ranging from engines passing beyond recommended overhaul times that cost more to overhaul or replace than the aircraft total value, accidents and incidents making aircraft unrecoverable, or owners passing away and leaving aircraft to estates that sit degrading in a forgotten hangar somewhere until they are no longer worth returning to service. Continue reading